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Abstract 
 

Workflow systems can manage complex scientific 
applications with distributed data processing.  
Although some workflow systems can represent 
collections of data with very compact abstractions and 
manage their execution efficiently, there are no 
approaches to date to manage collections of 
application components required to express some 
scientific applications.  We present an approach to 
handle collections of components and data alike in 
expressive workflow templates whose basic structure is 
reusable.  We also present an algorithm that can 
elaborate abstract compact workflow templates into 
execution-ready workflows that enumerate all 
computations to be carried out.  We implemented the 
proposed approach in the Wings workflow system.  
Our work is motivated by real-world complex scientific 
applications that require handling of nested collections 
of both components and data. 
 
1. Introduction 
 

Scientists often deal with collections of data, 
whether it is multiple overlaying images produced by 
fMRI scanners or thousands of gene sequences 
generated using high throughput sequencing. To deal 
with such large and complex collections of data, 
scientist have turned towards workflow technology. 
Computational experiments can be modeled as 
workflows, which are declarative representations of the 
dataflow between software components. Thus, 
sophisticated software packages can be weaved 
together in order to express a computational 
experiment. Once an experiment is represented as a 
workflow, workflow systems can be used to execute 
computational experiments on a large scale [3], 
optimize performance [15] and track the provenance of 
experimental outputs [7]. One important outcome of 
representing experiments as workflows is the ability 
for scientists to easily share and reuse experiments 
[11]. 

However, the software components within a 
workflow are in many cases not designed to process 
more than one data set at a time. Consider, for 
example, a bioinformatician, testing whether a 
particular gene expression predicts a given phenotype 
in an organism using a k-nearest neighbor classifier. 
This classifier typically only classifies one data set at a 
time, but imagine that the bioinformatician wants to 
test a newly trained classifier on many test data sets in 
order to have evidence of the classifier’s efficacy. Or, 
to find the classifier that produces the best results, the 
bioinfomatician may want to train and test a collection 
of alternative algorithms simultaneously. To support 
this sort of application using available software 
components, a workflow system needs to be able to 
represent, reason about and process not only 
collections of data but also collections of components. 

In order to further enable the sharing and reuse of 
computational experiments, workflows need to be able 
to be easily adapted both to new or similar data sets 
and the availability of new analysis components. For 
example, if new test data sets or classifiers are 
available for use by the aforementioned 
bioinformatician, the workflow should be easily (and 
perhaps automatically) adapted to them. Thus, the 
workflow system should make it easy to reuse the 
basic dataflow structure of an experiment at an abstract 
level, and dynamically incorporate new data sets and 
components. 

In this paper, we present a new approach to 
workflow representation and generation that addresses 
collections of data and components. While some 
workflow systems have treated collections [5;14;9], 
our approach to collections differs in that it 1) handles 
collections of components in addition to collections of 
data, and 2) automatically adapts the initial workflow 
template to new collections of data sets and 
components. Our approach is implemented as an 
extension to the Wings workflow system [4;7]. 

The paper starts with motivating examples that lead 
to requirements to handle collections.  We then 
describe the representations of workflow templates that 
we have developed to support those requirements.  We 
also present the algorithm that uses those 
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representations to map the abstract workflow templates 
into execution-ready workflows that enumerate all 
needed computations.  Finally, we describe how a 
number of workflows taken from the literature can be 
expressed with the proposed approach. 

 
2. Requirements on Workflow Templates 
 

Workflow templates represent abstractions over the 
actual workflow computations to be submitted to 
execution.  For example, if an executable workflow is 
to process in parallel two datasets of n1 and n2 
elements each we could imagine a workflow template 
that expresses that the computation is to be executed 
with the cross-product of the two sets or with their 
pair-wise combination.  We refer to each computation 
as a workflow component, which essentially represents 
some executable code whose execution and dataflow 
are managed by the workflow system1.  

For illustration purposes, we use examples of data 
mining algorithms and workflows since they are 
common in science, from bioinformatics to 
astrophysics to chemistry.  We look at classification 
tasks, where a model is used to classify a set of test 
data.  There are several widely-used approaches to 
building a model from a set of training data, such as 
decision trees (DT) and k-nearest neighbor (KNN).  
Within each approach several algorithms are possible.  
For example, decision tree algorithms include a classic 
divide and conquer algorithm (ID3) and a logistic 
model tree builder (LMT).  This results in a hierarchy 
of algorithm classes.  The class Modeler includes the 
subclass DecisionTree-Modeler, which includes ID3-m 
and LMT-m as possible workflow components.  The 
class Classifier includes the subclass DecisionTree-
Classifier, which includes ID3-c and LMT-c as 
possible workflow components. KNN-m is a Modeler 
that is not in the DecisionTree-Modeler class, and 
KNN-c is a Classifier that is not in the DecisionTree-
Classifier class.  We will use this very simple class 
hierarchy of workflow components in our examples. 

Figures 1 and 2 show several illustrative examples 
of desirable workflow abstractions.  Workflow diagram 
MTC (Model Then Classifier) at the top of Figure 1 
shows a dataflow structure where a modeler is trained 
with a training dataset using some parameter settings to 
produce a model, then a classifier uses the model to 
classify a test dataset and produce some accuracy 
measurement about the model.  Workflow diagram OA 
(Obtain  Accuracy)  at  the  top  of  Figure  2  shows  a 

 
                                                             
1 The discussion here focuses on command-line applications but can 
also be adapted for use with web services as components. 
 

MTC (ModelThenClassify): Workflow for modeling and 
classifying to produce an accuracy estimate. 

 
 
MTC-DT: User desires a set of workflows, one per possible 
combination of decision tree algorithms. 

 
 
MTC-PS: User desires a set of workflows to find the accuracy of a 
given algorithm (e.g. KNN) with a series of parameter settings. 

 
Figure 1. Workflows for modeling and 

classifying datasets using different 
selections of algorithm sets. 

 
dataflow structure where the maximum accuracy of a 
model is obtained for a set of test data.  MTC and OA 
could each be a reasonable reusable workflow 
template.  However, consider the following variants of 
those templates that a scientist may want to express.  
As we will show later, the variants shown here are 
simplifications of real cases of scientific workflows. 

A variant of MTC is to use that basic template to 
generate a set of workflows, one for each possible 
combination of modeler and classifier algorithms (for 
example, algorithms based on decision trees).  We will 
 



OA (ObtainAccuracy): Workflow for estimating the maximum 
accuracy of a model for a set of test data. 

 
OA-DT: User desires a workflow for estimating the maximum 
accuracy of a set of algorithms. 

 
OA-DTW: User desires a workflow for estimating the maximum 
accuracy of each of a set of algorithms. 

 
OA-M: User desires a workflow to find the maximum accuracy of an 
algorithm using a set of models 
 

 
 

Figure 2. Workflows for measuring the 
accuracy of different algorithm sets. 

refer to this variant as MTC-DT. A second variant of 
MTC is to use that same basic template to generate a 
set of workflows, one for each of a series of parameter 
settings for a k-nearest neighbor based modeler and 

classifier.  We will refer to this variant as MTC-PS. 
For both these variants, the user would obtain several 
workflows and explore which one serves their needs 
best. 

To represent these variants of the same MTC 
workflow template, we need to express: 
• Iterations of a workflow over a set of data (e.g., 

the set of parameter settings for MTC-PS).  
• Iterations of a workflow over a set of algorithms 

(e.g., the set of decision tree algorithms in MTC-
DT). 

• Algorithm types that are valid for the particular 
user request (e.g., the class of decision tree 
algorithms in MTC-DT). 

• A specific algorithm to be used (e.g., KNN in 
MTC-PS). 

Let us consider some variants on the OA template.  
A scientist may want to obtain the maximum accuracy 
of a class of algorithms (e.g., decision tree algorithms).  
We refer to this variant as OA-DT.  A second variant, 
OA-DTW, would obtain the maximum accuracy for 
each of the algorithms in a set separately.  A third 
variant would use the same basic OA template but 
obtaining the maximum accuracy for one algorithm 
(for example, a k-nearest neighbor) using a set of 
models and a set of training data.  We refer to this 
variant as OA-M. Note that for OA-DTW separate 
workflows are created as in the variants of the MTC 
template from Figure 1, but for the other variants the 
result is a single workflow, where the results of the sets 
are accumulated by the Max component. Representing 
these variants poses some additional requirements: 
• Creating a set of components each for an algorithm 

in a given set (e.g., a component for each decision 
tree algorithm in the case of OA-DT). 

• Creating a set of components each to process a data 
element in a given data set (e.g., a component for 
each model and each test pair in the case of OA-M). 
The next section describes how these requirements 

can be addressed with a representation of workflow 
templates that can specify the variants above. 

 
3. Expressive Representations of Workflow 
Templates 

Our approach to representing workflow templates is 
based on several key ideas: 

1. We use workflow variables to represent 
datasets as well as workflow components.  

2. We allow semantic constraints to be associated 
with workflow variables, to express whether 
they represent individuals or sets, what their 
types are, other properties such as the sizes of 
sets, and the bindings to individuals or sets.  



3. We use special constructs to specify how sets 
of components or sets of data are to be handled 
by the workflow system when elaborating the 
template. 

We have also developed an algorithm that uses 
these representations to map workflow templates into 
workflow instances that can be submitted to an 
execution engine.  That is, with our workflow template 
language we need to be able to express templates to 
reflect the kinds of workflow variants shown in Figures 
1 and 2, and with our mapping algorithm we need to be 
able to generate workflow instances that have 
elaborated each specific computation to be executed as 
shown in the variants discussed earlier. We describe 
the algorithm for elaborating workflow templates and 
mapping them to workflow instances in Section 4.  

The rest of this section describes how workflow 
templates are represented. In our examples, any 
assertions about a workflow will be given as triples.  In 
our implementation, workflows are represented using 
the W3C’s Web Ontology Language (OWL) standard2, 
as are components and datasets.  We use N3-like 
notation3 in our examples. We believe that the same 
underlying model could be incorporated in alternative 
representation frameworks where object types and 
properties can be expressed. 

 
3.1 Structure of Workflow Templates 

A workflow template includes a specification of the 
basic dataflow structure of the workflow as a graph of 
nodes and links.  The structure does not contain any 
repetitions of components or datasets, rather any 
repetition is compactly represented by a variable 
constrained to take a set.  Specifically, each individual 
dataset or dataset collection is assigned a unique 
variable, and each individual component or repetition 
of components is assigned a unique variable. 
Component variables are assigned to nodes, and data 
variables are assigned to links.  Links express dataflow 
across components as their origin and destination 
nodes, unless they are input or output of the workflow 
in which case they are missing their origin or 
destination, respectively. 

For example, to express the Modeler node in the 
MTC workflow and its surrounding links we would 
assert the following: 

Modeler-Node has-var Modeler-Var  
Modeler-Var type Modeler 
Classifier-Node has-var Classifier-Var 
Classifier-Var type Classifier 
Link1 type InputLink 
Link1 has-var TrainingData-Var 

                                                             
2 http://www.w3.org/2004/OWL/ 
3 http://www.w3.org/DesignIssues/Notation3.html 

Link1 has-destination Modeler-Node 
Link2 type InputLink 
Link2 has-var ParameterSettings-Var 
Link2 has-destination Modeler-Node 
Link3 has-var Model-Var 
Model-Var type Model 
Link3 has-origin Modeler-Node 
Link3 has-destination Classifier-Node 

 
Nodes can also be assigned subworkflows.  For 

example a workflow could have the MTC 
subworkflow in a node: 

GetAccuracy-Node has-var GetAccuracy-Var 
GetAccuracy-Var type MTC 

We will mention later on how we express the 
connections between dataflow links and the arguments 
of components.  
 
3.2. Semantic Constraints on Data and 
Component Collections 

We express semantic constraints on workflow data 
variables.  One use of semantic constraints, as seen 
before, is to specify types.  For example in the MTC-
DT workflow we can express: 

Modeler-Var type DecisionTreeModeler 

This means that any Modeler algorithm that is in the 
subclass DT (decision trees) can be assigned to that 
variable. 

Another use of semantic constraints is to express 
bindings, i.e., assignments of specific datasets or a 
specific algorithms to the variables.  For example in 
the MTC-PS variant: 

Modeler-Var has-binding KNN-m 

This means that the variable has been assigned the 
modeler algorithm for k-nearest neighbor. 

We also use semantic constraints to represent 
collections of datasets, as well as constraints on those 
collections.  Collections have dimensions that allow 
nesting, and have a size along each dimension.  For 
example, in the OA-M variant: 

Model-Var has-dim 1 
Model-Var has-binding m1 m2 m3 

That is, the input to the workflow will be a set of 
models. 

We handle sets of parameters in the same way that 
we handle sets of data. 

We can also enumerate the elements of the set by 
associating constraints to the variable.  For example, 
OA-DTW could be expressed by stating the specific 
algorithms are to be used as modelers: 



Classifier-Var has-dim 1 
Classifier-Var has-binding ID3-c LMT-c 

This way, we can express both intensional or 
extensional sets associated with a workflow variable. 

Sets of data can be represented similarly.  Multi-
dimensional sets can also be represented.  For example, 
to represent that a 3D image can be broken into 2D 
layers each layer containing tiles we would state: 

Image-Var has-dim 2 
Image-Var type Tile 
 

Semantic constraints can also be expressed among 
variables in a workflow and any subworkflows 
assigned to its nodes.  In our framework, we use 
namespaces to refer to subworkflow variables. 
 
3.3. Component Collections and Mappings 

We need to express what behavior we expect from 
the system when elaborating a workflow template that 
has sets of components or sets of datasets.  In 
elaborating the template, each node and link containing 
sets has to be mapped into a set of nodes and links. 
However, there are different ways to do those 
mappings, and we have special constructs for each 
kind.  

There are two distinct cases of nodes and links that 
need to be mapped: 1) component mappings or c-
mappings, when a node in a workflow template has a 
component variable containing a set of components, 
and 2) data mappings or d-mappings, when a node is 
the destination of a link whose data variable has a 
higher dimensionality than the inputs of the component 
of the node’s component variable.   

There are two constructs to handle c-mappings.  
The WC (“a Workflow per Component”) construct 
expresses that alternative workflows need to be created 
for each element of the set of components.  To achieve 
the MTC-DT variant we would state in the template: 

Modeler-Var type DecisionTreeModeler 
Modeler-Node has-mapping WC 
Classifier-Var type DecisionTreeClassifier  
Classifier-Node has-mapping WC 

 
So each node in MTC would be spawning a new 

workflow per algorithm.  The result is several 
workflows, each with a possible combination of 
decision tree algorithms. 

The BC (“a Branch per Component”) is another 
construct for c-mappings.  It expresses that alternative 
branches need to be created for each element in the set 
of components.  The OA-DT variant can be achieved 
by stating in the template: 

Classifier-Node has-mapping BC 

It is important to note that this BC construct leaves 
all the branches within the same workflow, while the 
WC construct results in the creation of new workflows. 

There are two analogous constructs to handle d-
mappings.  The WD (“a Workflow per Dataset”) 
construct indicates that alternative workflows need to 
be created for each extra dimension and element of the 
set of the data variable.  The MTC-PS variant can be 
expressed using this construct as follows: 

 
TestData-Var has-binding p1 p2 p3 p4 p5 
Link3 has-var ParameterSettings-Var 
Link3 has-destination Modeler-Node 
Modeler-Node has-var Modeler-Var 
Modeler-Var has-binding KNN-m 
Modeler-Node has-mapping WD 

Five separate workflows would result in this case. 
The BD (“a Branch per Dataset”) construct is also 

used for d-mappings.  It expresses that alternative 
branches need to be created for each extra dimension 
and element of the set of the data variable.  The OA-M 
variant can be created by stating: 

Model-Var has-binding m1 m2 m 
Link3 has-var ModelData-Var 
Link3 has-destination Classifier-Node 
Classifier-Node has-var Classifier-Var 
Classifier-Var has-binding KNN 
Classifier-Node has-mapping BD 

The result would be four branches in the same 
workflow, each corresponding to one of the models. 

Section 4 describes how these constructs are used 
within our algorithm to elaborate workflow templates. 
 
3.4. Arguments to Subworkflows and 
Components 

Each component has roles, which are unique 
identifiers for its arguments.  Similarly, each 
subworkflow has roles.  Each node has ports, which are 
unique identifiers for the arguments of its component’s 
roles. We support cross-product and pairwise 
combinations of datasets coming to ports in a node into 
the roles of the individual components. 
 
4. Workflow Elaboration Algorithm 
 

Recall that the purpose of the workflow system is to 
elaborate template workflows into executable ones. For 
that, the system needs to interpret the constructs that 
are used to describe the mapping of sets that are used 
in specifying the workflow template.  We present here 
a workflow elaboration algorithm that builds on the 
Wings workflow generation algorithm [4]. 

The algorithm elaborates workflows in two major 
phases: (1) component selection and (2) data 



projection.  In Phase 1, starting from the end data 
products in the workflow, the workflow is traversed 
backwards. In this traversal, when nodes are not bound 
to specific components yet, the component catalog 
(which stores classes of components) is queried to 
obtain a (possibly empty) set of appropriate 
components to which the node’s component variable 
can be bound. This selection is made based on the 
constraints that are specified in the workflow template 
and additional constraints that are propagated 
backwards from the data products of the workflow. 
During the back-propagation, the component catalog is 
queried to obtain constraints on the inputs of specific 
components that are necessary for the component to 
produce the desired output. If a component is not able 
to produce the desired output under any circumstances, 
it is ruled out. 

During this first phase, a query to the component 
catalog may return more than one eligible component. 
This is where the mapping constructs WC and BC 
come into play. If the node is marked as a WC, the 
algorithm produces separate workflows for each 
eligible component. In case of a BC, the algorithm 
creates separate branches within the same workflow 
instead, i.e., it creates several copies of the node, one 
for each eligible component returned by the component 
catalog.  At the end of Phase 1, the constraints have 
been propagated to the workflow inputs. 

In Phase 2, the constraints on the data inputs 
provided by the user are propagated forward through 
the workflow(s).  As we mentioned earlier, a variable 
for input data could be bound to a set of several 
dimensions. As with the component selection, the 
choice of mapping constructs, WD or BD, is used to 
decide how to proceed when the dimensionality of the 
input data to a node’s port does not match the 
dimensionality of its component’s corresponding input 
role. In such a case, when WD is used to mark the port 
of the node, a separate workflow is created for each 
data item in the set. In case of BD, separate branches 
within the same workflow are created, i.e., copies of 
the nodes are created for each input element. Given the 
constraints unveiled by Phase 1, though, some of these 
elements may be rejected as invalid. It is important to 
note that certain components may produce the same 
number of outputs, independent from the number of 
inputs. This is the case, for instance, for the “Max” in 
the OA workflow template, which aggregates its input 
data sets into a single output element. This is the 
reason why it is not the case that an increase of the 
dimensionality or size of inputs always results in an 
equal increase in dimensionality of all subsequent data 
products and nodes. 

The workflows variants shown at the bottom of 
Figures 1 and 2 are results of running this algorithm 

given different mapping constructs (WC, BC, WD, 
BD) and data input dimensions. These resulting 
workflows can be converted to a format appropriate for 
the execution engine of choice, in our case Pegasus [3]. 

Table 1 shows how the workflows in Figure 1 and 2 
would be achieved using our approach.  Note that it is 
possible to associate more than one of these constructs 
within the same workflow. 

 
Workflow Variant Collection Handling 
MTC-DT WC on modeler variable 

WC on classifier variable 
MTC-PS WD on parameter settings 

variable 
OA-DT BC on classifier variable  

BD on test data variable 
OA-DTW WC on classifier node variable 

BD on test data variable 
OA-M BD on test data variable 

BD on model variable 
Table 1.  Representation of Example Workflows. 

 
5. Representing Scientific Workflows 
 

This section shows how our approach is used to 
create scientific workflows described in the literature.  
The workflows included here were selected to illustrate 
the variety of capabilities of our approach. 

[8] describes an application where we used Wings 
to manage workflows for biomedical imaging.  A 
workflow template from that work is depicted in 
Figure 3.  We exploited the management of datasets as 
well as reasoning about semantic constraints on data 
collections in order to anticipate the amount of 
computations and data products to be expected from 
the workflow.  Using this information, a tradeoff 
module was able to make informed decisions about 
how many resources to allocate to the workflow and 
how to set parameters for the individual algorithms 
based on quality/performance tradeoffs.  In our case, 
the workflow was then submitted to the Pegasus 
workflow mapping and execution engine for execution 
over distributed resources. 

 [10] describes GenePattern, a system that can help 
users manage abstract protocols for genomic analysis 
that can be specialized into executable pipelines 
(workflows).  Each component in a protocol may 
correspond to many executable modules, similar in 
nature to our discussion above regarding component 
classes and subclasses.  In their system, the protocols 
are specialized by the user.  Figure 4 illustrates with a 
diagram a workflow template of one of the abstract 
protocols available in their system. Using the proposed 

 



  
Figure 3.  Sketch of a workflow template for 

biomedical imaging used in [9]. 

Figure 4. Sketch of a workflow template to 
represent an abstract protocol for genomic 
analysis from [11]. 

 

 
Figure 5.  Sketch of a workflow for protein 

secondary structure prediction from [17]. 
 

approach in Wings, we are able to specialize the 
protocols into executable pipelines automatically.  

[16] describes an approach to protein secondary 
structure prediction that uses several algorithms and a 
combination function.  Figure 5 illustrates the abstract 
template that would correspond to the workflow  
representing that approach. 

These real-world workflows illustrate the potential 
of our approach.  If scientists had at their disposal 
expressive reusable workflow templates and workflow 
systems that could interpret, specialize, and execute 
them, they would have a very powerful experimental 
apparatus.  Data analysis workflows are becoming 
increasingly more complex, due to the use of 
sophisticated statistical techniques and the increasing 
diversity of algorithms available to them.  For 
example, the workflows shown in Section 2 are taken 
from work that we are doing to represent nested cross-
validation approaches and optimization techniques for 
parameter selection that are frequently used in 
genomics and other sciences. 

 
6. Related Work 

Simplified approaches to dealing with collections of 
data have a long tradition in computer science. 
Sipelstein and Blelloch provide an extensive review of 
collection-oriented programming languages [12]. 
While our focus is on workflow systems that deal with 
collections, it is important to note that much of this 
work adopts the approaches of programming languages 
and in particular the use of higher-order functions such 
as “map” that apply a function to all elements in a list.  

Hidders et al. combine the Nested Relational 
Calculus [2] and Petri-nets in a workflow language 
called DFL to be able to deal with operations on 
collections within in the context of data flow centric 
workflows [5]. The Nested Relational Calculus is a 
super set of comprehension syntax, commonly used in 
collection oriented languages [1]. Our approach differs 
from DFL in that Wings automatically determines how 
a collection should be decomposed and recombined for 
a particular component. In DFL, the user must specify 
how this is done using explicit nest and unnest 
operations.  

Unlike DFL, Taverna is able to automatically 
adapt a collection to a component [14]. For example, 
when a component accepts a single data item as input 
and is provided a list, Taverna performs an implicit 
iteration using the component over the input data set. If 
there are multiple inputs to the same component, then 
Taverna performs either a dot or Cartesian product on 
the input data sets and then invokes the implicit 
iteration over the resulting list. For each workflow 
component, the choice of dot or cartesian product is 



specified by the user [13]. Hidders et al. provide an 
alternative formal description of the semantics of a 
Taverna workflow that treats collections but also deals 
with failures and side effects [6]. Unlike Taverna, our 
approach is to reason about collections prior to 
execution.  That is, a user or execution system can 
determine how a data collection will impact a 
workflow prior to execution. Additionally, Wings 
handles not only data collections but also collections of 
components. Thus, a user can more easily express an 
experiment in which multiple components of the same 
type can be applied to a collection of data. 
Interestingly, [14] hypothesizes the ability to generate 
an executable version of a workflow from a high-level 
description. Wings realizes this hypothesized 
functionality.  

Kepler provides another approach to handling 
collections of data. It specifies a particular data 
structure for collections, namely a flat list of data 
elements separated by tokens [9]. Once a collection is 
transformed into Kepler’s format, Kepler models a 
workflow as an “assembly line”, where the collection 
is given to each component in the order defined by the 
workflow. Each component is then responsible for 
selecting the part of the collection that it needs to 
operate on. Additionally, the component is responsible 
for adding to the collection in a compatible manner. 
This approach has several advantages including the 
ability to incrementally modify a collection and the 
elimination of complex control structures. However, 
unlike our approach, it requires that both the data sets 
and components are modified to conform with the 
requirements of Kepler's approach. 
 
7. Conclusions 
 

Scientific applications often require complex 
handling of collections of both components and data.  
This paper builds upon our prior work in the Wings 
workflow system and demonstrates an additional layer 
of adaptability that allows a workflow template to be 
applied and reused with collections that change its 
structure. A novel contribution is the handling of 
collections of components. 
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