
Expressive Reusable Workflow Templates

Yolanda Gil, Paul Groth, Varun Ratnakar, Christian Fritz
USC/Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA, 90292, USA
{gil, pgroth, varunr, fritz}@isi.edu

Abstract

Workflow systems can manage complex scientific
applications with distributed data processing.
Although some workflow systems can represent
collections of data with very compact abstractions and
manage their execution efficiently, there are no
approaches to date to manage collections of
application components required to express some
scientific applications. We present an approach to
handle collections of components and data alike in
expressive workflow templates whose basic structure is
reusable. We also present an algorithm that can
elaborate abstract compact workflow templates into
execution-ready workflows that enumerate all
computations to be carried out. We implemented the
proposed approach in the Wings workflow system.
Our work is motivated by real-world complex scientific
applications that require handling of nested collections
of both components and data.

1. Introduction

Scientists often deal with collections of data,
whether it is multiple overlaying images produced by
fMRI scanners or thousands of gene sequences
generated using high throughput sequencing. To deal
with such large and complex collections of data,
scientist have turned towards workflow technology.
Computational experiments can be modeled as
workflows, which are declarative representations of the
dataflow between software components. Thus,
sophisticated software packages can be weaved
together in order to express a computational
experiment. Once an experiment is represented as a
workflow, workflow systems can be used to execute
computational experiments on a large scale [3],
optimize performance [15] and track the provenance of
experimental outputs [7]. One important outcome of
representing experiments as workflows is the ability
for scientists to easily share and reuse experiments
[11].

However, the software components within a
workflow are in many cases not designed to process
more than one data set at a time. Consider, for
example, a bioinformatician, testing whether a
particular gene expression predicts a given phenotype
in an organism using a k-nearest neighbor classifier.
This classifier typically only classifies one data set at a
time, but imagine that the bioinformatician wants to
test a newly trained classifier on many test data sets in
order to have evidence of the classifier’s efficacy. Or,
to find the classifier that produces the best results, the
bioinfomatician may want to train and test a collection
of alternative algorithms simultaneously. To support
this sort of application using available software
components, a workflow system needs to be able to
represent, reason about and process not only
collections of data but also collections of components.

In order to further enable the sharing and reuse of
computational experiments, workflows need to be able
to be easily adapted both to new or similar data sets
and the availability of new analysis components. For
example, if new test data sets or classifiers are
available for use by the aforementioned
bioinformatician, the workflow should be easily (and
perhaps automatically) adapted to them. Thus, the
workflow system should make it easy to reuse the
basic dataflow structure of an experiment at an abstract
level, and dynamically incorporate new data sets and
components.

In this paper, we present a new approach to
workflow representation and generation that addresses
collections of data and components. While some
workflow systems have treated collections [5;14;9],
our approach to collections differs in that it 1) handles
collections of components in addition to collections of
data, and 2) automatically adapts the initial workflow
template to new collections of data sets and
components. Our approach is implemented as an
extension to the Wings workflow system [4;7].

The paper starts with motivating examples that lead
to requirements to handle collections. We then
describe the representations of workflow templates that
we have developed to support those requirements. We
also present the algorithm that uses those

Proceedings of the Fifth IEEE International Conference on e-Science (e-Science 2009), Oxford, UK,
December 9-11, 2009.

representations to map the abstract workflow templates
into execution-ready workflows that enumerate all
needed computations. Finally, we describe how a
number of workflows taken from the literature can be
expressed with the proposed approach.

2. Requirements on Workflow Templates

Workflow templates represent abstractions over the
actual workflow computations to be submitted to
execution. For example, if an executable workflow is
to process in parallel two datasets of n1 and n2
elements each we could imagine a workflow template
that expresses that the computation is to be executed
with the cross-product of the two sets or with their
pair-wise combination. We refer to each computation
as a workflow component, which essentially represents
some executable code whose execution and dataflow
are managed by the workflow system1.

For illustration purposes, we use examples of data
mining algorithms and workflows since they are
common in science, from bioinformatics to
astrophysics to chemistry. We look at classification
tasks, where a model is used to classify a set of test
data. There are several widely-used approaches to
building a model from a set of training data, such as
decision trees (DT) and k-nearest neighbor (KNN).
Within each approach several algorithms are possible.
For example, decision tree algorithms include a classic
divide and conquer algorithm (ID3) and a logistic
model tree builder (LMT). This results in a hierarchy
of algorithm classes. The class Modeler includes the
subclass DecisionTree-Modeler, which includes ID3-m
and LMT-m as possible workflow components. The
class Classifier includes the subclass DecisionTree-
Classifier, which includes ID3-c and LMT-c as
possible workflow components. KNN-m is a Modeler
that is not in the DecisionTree-Modeler class, and
KNN-c is a Classifier that is not in the DecisionTree-
Classifier class. We will use this very simple class
hierarchy of workflow components in our examples.

Figures 1 and 2 show several illustrative examples
of desirable workflow abstractions. Workflow diagram
MTC (Model Then Classifier) at the top of Figure 1
shows a dataflow structure where a modeler is trained
with a training dataset using some parameter settings to
produce a model, then a classifier uses the model to
classify a test dataset and produce some accuracy
measurement about the model. Workflow diagram OA
(Obtain Accuracy) at the top of Figure 2 shows a

1 The discussion here focuses on command-line applications but can
also be adapted for use with web services as components.

MTC (ModelThenClassify): Workflow for modeling and
classifying to produce an accuracy estimate.

MTC-DT: User desires a set of workflows, one per possible
combination of decision tree algorithms.

MTC-PS: User desires a set of workflows to find the accuracy of a
given algorithm (e.g. KNN) with a series of parameter settings.

Figure 1. Workflows for modeling and

classifying datasets using different
selections of algorithm sets.

dataflow structure where the maximum accuracy of a
model is obtained for a set of test data. MTC and OA
could each be a reasonable reusable workflow
template. However, consider the following variants of
those templates that a scientist may want to express.
As we will show later, the variants shown here are
simplifications of real cases of scientific workflows.

A variant of MTC is to use that basic template to
generate a set of workflows, one for each possible
combination of modeler and classifier algorithms (for
example, algorithms based on decision trees). We will

OA (ObtainAccuracy): Workflow for estimating the maximum
accuracy of a model for a set of test data.

OA-DT: User desires a workflow for estimating the maximum
accuracy of a set of algorithms.

OA-DTW: User desires a workflow for estimating the maximum
accuracy of each of a set of algorithms.

OA-M: User desires a workflow to find the maximum accuracy of an
algorithm using a set of models

Figure 2. Workflows for measuring the
accuracy of different algorithm sets.

refer to this variant as MTC-DT. A second variant of
MTC is to use that same basic template to generate a
set of workflows, one for each of a series of parameter
settings for a k-nearest neighbor based modeler and

classifier. We will refer to this variant as MTC-PS.
For both these variants, the user would obtain several
workflows and explore which one serves their needs
best.

To represent these variants of the same MTC
workflow template, we need to express:
• Iterations of a workflow over a set of data (e.g.,

the set of parameter settings for MTC-PS).
• Iterations of a workflow over a set of algorithms

(e.g., the set of decision tree algorithms in MTC-
DT).

• Algorithm types that are valid for the particular
user request (e.g., the class of decision tree
algorithms in MTC-DT).

• A specific algorithm to be used (e.g., KNN in
MTC-PS).

Let us consider some variants on the OA template.
A scientist may want to obtain the maximum accuracy
of a class of algorithms (e.g., decision tree algorithms).
We refer to this variant as OA-DT. A second variant,
OA-DTW, would obtain the maximum accuracy for
each of the algorithms in a set separately. A third
variant would use the same basic OA template but
obtaining the maximum accuracy for one algorithm
(for example, a k-nearest neighbor) using a set of
models and a set of training data. We refer to this
variant as OA-M. Note that for OA-DTW separate
workflows are created as in the variants of the MTC
template from Figure 1, but for the other variants the
result is a single workflow, where the results of the sets
are accumulated by the Max component. Representing
these variants poses some additional requirements:
• Creating a set of components each for an algorithm

in a given set (e.g., a component for each decision
tree algorithm in the case of OA-DT).

• Creating a set of components each to process a data
element in a given data set (e.g., a component for
each model and each test pair in the case of OA-M).
The next section describes how these requirements

can be addressed with a representation of workflow
templates that can specify the variants above.

3. Expressive Representations of Workflow
Templates

Our approach to representing workflow templates is
based on several key ideas:

1. We use workflow variables to represent
datasets as well as workflow components.

2. We allow semantic constraints to be associated
with workflow variables, to express whether
they represent individuals or sets, what their
types are, other properties such as the sizes of
sets, and the bindings to individuals or sets.

3. We use special constructs to specify how sets
of components or sets of data are to be handled
by the workflow system when elaborating the
template.

We have also developed an algorithm that uses
these representations to map workflow templates into
workflow instances that can be submitted to an
execution engine. That is, with our workflow template
language we need to be able to express templates to
reflect the kinds of workflow variants shown in Figures
1 and 2, and with our mapping algorithm we need to be
able to generate workflow instances that have
elaborated each specific computation to be executed as
shown in the variants discussed earlier. We describe
the algorithm for elaborating workflow templates and
mapping them to workflow instances in Section 4.

The rest of this section describes how workflow
templates are represented. In our examples, any
assertions about a workflow will be given as triples. In
our implementation, workflows are represented using
the W3C’s Web Ontology Language (OWL) standard2,
as are components and datasets. We use N3-like
notation3 in our examples. We believe that the same
underlying model could be incorporated in alternative
representation frameworks where object types and
properties can be expressed.

3.1 Structure of Workflow Templates

A workflow template includes a specification of the
basic dataflow structure of the workflow as a graph of
nodes and links. The structure does not contain any
repetitions of components or datasets, rather any
repetition is compactly represented by a variable
constrained to take a set. Specifically, each individual
dataset or dataset collection is assigned a unique
variable, and each individual component or repetition
of components is assigned a unique variable.
Component variables are assigned to nodes, and data
variables are assigned to links. Links express dataflow
across components as their origin and destination
nodes, unless they are input or output of the workflow
in which case they are missing their origin or
destination, respectively.

For example, to express the Modeler node in the
MTC workflow and its surrounding links we would
assert the following:

Modeler-Node has-var Modeler-Var
Modeler-Var type Modeler
Classifier-Node has-var Classifier-Var
Classifier-Var type Classifier
Link1 type InputLink
Link1 has-var TrainingData-Var

2 http://www.w3.org/2004/OWL/
3 http://www.w3.org/DesignIssues/Notation3.html

Link1 has-destination Modeler-Node
Link2 type InputLink
Link2 has-var ParameterSettings-Var
Link2 has-destination Modeler-Node
Link3 has-var Model-Var
Model-Var type Model
Link3 has-origin Modeler-Node
Link3 has-destination Classifier-Node

Nodes can also be assigned subworkflows. For

example a workflow could have the MTC
subworkflow in a node:

GetAccuracy-Node has-var GetAccuracy-Var
GetAccuracy-Var type MTC

We will mention later on how we express the
connections between dataflow links and the arguments
of components.

3.2. Semantic Constraints on Data and
Component Collections

We express semantic constraints on workflow data
variables. One use of semantic constraints, as seen
before, is to specify types. For example in the MTC-
DT workflow we can express:

Modeler-Var type DecisionTreeModeler

This means that any Modeler algorithm that is in the
subclass DT (decision trees) can be assigned to that
variable.

Another use of semantic constraints is to express
bindings, i.e., assignments of specific datasets or a
specific algorithms to the variables. For example in
the MTC-PS variant:

Modeler-Var has-binding KNN-m

This means that the variable has been assigned the
modeler algorithm for k-nearest neighbor.

We also use semantic constraints to represent
collections of datasets, as well as constraints on those
collections. Collections have dimensions that allow
nesting, and have a size along each dimension. For
example, in the OA-M variant:

Model-Var has-dim 1
Model-Var has-binding m1 m2 m3

That is, the input to the workflow will be a set of
models.

We handle sets of parameters in the same way that
we handle sets of data.

We can also enumerate the elements of the set by
associating constraints to the variable. For example,
OA-DTW could be expressed by stating the specific
algorithms are to be used as modelers:

Classifier-Var has-dim 1
Classifier-Var has-binding ID3-c LMT-c

This way, we can express both intensional or
extensional sets associated with a workflow variable.

Sets of data can be represented similarly. Multi-
dimensional sets can also be represented. For example,
to represent that a 3D image can be broken into 2D
layers each layer containing tiles we would state:

Image-Var has-dim 2
Image-Var type Tile

Semantic constraints can also be expressed among
variables in a workflow and any subworkflows
assigned to its nodes. In our framework, we use
namespaces to refer to subworkflow variables.

3.3. Component Collections and Mappings

We need to express what behavior we expect from
the system when elaborating a workflow template that
has sets of components or sets of datasets. In
elaborating the template, each node and link containing
sets has to be mapped into a set of nodes and links.
However, there are different ways to do those
mappings, and we have special constructs for each
kind.

There are two distinct cases of nodes and links that
need to be mapped: 1) component mappings or c-
mappings, when a node in a workflow template has a
component variable containing a set of components,
and 2) data mappings or d-mappings, when a node is
the destination of a link whose data variable has a
higher dimensionality than the inputs of the component
of the node’s component variable.

There are two constructs to handle c-mappings.
The WC (“a Workflow per Component”) construct
expresses that alternative workflows need to be created
for each element of the set of components. To achieve
the MTC-DT variant we would state in the template:

Modeler-Var type DecisionTreeModeler
Modeler-Node has-mapping WC
Classifier-Var type DecisionTreeClassifier
Classifier-Node has-mapping WC

So each node in MTC would be spawning a new

workflow per algorithm. The result is several
workflows, each with a possible combination of
decision tree algorithms.

The BC (“a Branch per Component”) is another
construct for c-mappings. It expresses that alternative
branches need to be created for each element in the set
of components. The OA-DT variant can be achieved
by stating in the template:

Classifier-Node has-mapping BC

It is important to note that this BC construct leaves
all the branches within the same workflow, while the
WC construct results in the creation of new workflows.

There are two analogous constructs to handle d-
mappings. The WD (“a Workflow per Dataset”)
construct indicates that alternative workflows need to
be created for each extra dimension and element of the
set of the data variable. The MTC-PS variant can be
expressed using this construct as follows:

TestData-Var has-binding p1 p2 p3 p4 p5
Link3 has-var ParameterSettings-Var
Link3 has-destination Modeler-Node
Modeler-Node has-var Modeler-Var
Modeler-Var has-binding KNN-m
Modeler-Node has-mapping WD

Five separate workflows would result in this case.
The BD (“a Branch per Dataset”) construct is also

used for d-mappings. It expresses that alternative
branches need to be created for each extra dimension
and element of the set of the data variable. The OA-M
variant can be created by stating:

Model-Var has-binding m1 m2 m
Link3 has-var ModelData-Var
Link3 has-destination Classifier-Node
Classifier-Node has-var Classifier-Var
Classifier-Var has-binding KNN
Classifier-Node has-mapping BD

The result would be four branches in the same
workflow, each corresponding to one of the models.

Section 4 describes how these constructs are used
within our algorithm to elaborate workflow templates.

3.4. Arguments to Subworkflows and
Components

Each component has roles, which are unique
identifiers for its arguments. Similarly, each
subworkflow has roles. Each node has ports, which are
unique identifiers for the arguments of its component’s
roles. We support cross-product and pairwise
combinations of datasets coming to ports in a node into
the roles of the individual components.

4. Workflow Elaboration Algorithm

Recall that the purpose of the workflow system is to
elaborate template workflows into executable ones. For
that, the system needs to interpret the constructs that
are used to describe the mapping of sets that are used
in specifying the workflow template. We present here
a workflow elaboration algorithm that builds on the
Wings workflow generation algorithm [4].

The algorithm elaborates workflows in two major
phases: (1) component selection and (2) data

projection. In Phase 1, starting from the end data
products in the workflow, the workflow is traversed
backwards. In this traversal, when nodes are not bound
to specific components yet, the component catalog
(which stores classes of components) is queried to
obtain a (possibly empty) set of appropriate
components to which the node’s component variable
can be bound. This selection is made based on the
constraints that are specified in the workflow template
and additional constraints that are propagated
backwards from the data products of the workflow.
During the back-propagation, the component catalog is
queried to obtain constraints on the inputs of specific
components that are necessary for the component to
produce the desired output. If a component is not able
to produce the desired output under any circumstances,
it is ruled out.

During this first phase, a query to the component
catalog may return more than one eligible component.
This is where the mapping constructs WC and BC
come into play. If the node is marked as a WC, the
algorithm produces separate workflows for each
eligible component. In case of a BC, the algorithm
creates separate branches within the same workflow
instead, i.e., it creates several copies of the node, one
for each eligible component returned by the component
catalog. At the end of Phase 1, the constraints have
been propagated to the workflow inputs.

In Phase 2, the constraints on the data inputs
provided by the user are propagated forward through
the workflow(s). As we mentioned earlier, a variable
for input data could be bound to a set of several
dimensions. As with the component selection, the
choice of mapping constructs, WD or BD, is used to
decide how to proceed when the dimensionality of the
input data to a node’s port does not match the
dimensionality of its component’s corresponding input
role. In such a case, when WD is used to mark the port
of the node, a separate workflow is created for each
data item in the set. In case of BD, separate branches
within the same workflow are created, i.e., copies of
the nodes are created for each input element. Given the
constraints unveiled by Phase 1, though, some of these
elements may be rejected as invalid. It is important to
note that certain components may produce the same
number of outputs, independent from the number of
inputs. This is the case, for instance, for the “Max” in
the OA workflow template, which aggregates its input
data sets into a single output element. This is the
reason why it is not the case that an increase of the
dimensionality or size of inputs always results in an
equal increase in dimensionality of all subsequent data
products and nodes.

The workflows variants shown at the bottom of
Figures 1 and 2 are results of running this algorithm

given different mapping constructs (WC, BC, WD,
BD) and data input dimensions. These resulting
workflows can be converted to a format appropriate for
the execution engine of choice, in our case Pegasus [3].

Table 1 shows how the workflows in Figure 1 and 2
would be achieved using our approach. Note that it is
possible to associate more than one of these constructs
within the same workflow.

Workflow Variant Collection Handling
MTC-DT WC on modeler variable

WC on classifier variable
MTC-PS WD on parameter settings

variable
OA-DT BC on classifier variable

BD on test data variable
OA-DTW WC on classifier node variable

BD on test data variable
OA-M BD on test data variable

BD on model variable
Table 1. Representation of Example Workflows.

5. Representing Scientific Workflows

This section shows how our approach is used to
create scientific workflows described in the literature.
The workflows included here were selected to illustrate
the variety of capabilities of our approach.

[8] describes an application where we used Wings
to manage workflows for biomedical imaging. A
workflow template from that work is depicted in
Figure 3. We exploited the management of datasets as
well as reasoning about semantic constraints on data
collections in order to anticipate the amount of
computations and data products to be expected from
the workflow. Using this information, a tradeoff
module was able to make informed decisions about
how many resources to allocate to the workflow and
how to set parameters for the individual algorithms
based on quality/performance tradeoffs. In our case,
the workflow was then submitted to the Pegasus
workflow mapping and execution engine for execution
over distributed resources.

 [10] describes GenePattern, a system that can help
users manage abstract protocols for genomic analysis
that can be specialized into executable pipelines
(workflows). Each component in a protocol may
correspond to many executable modules, similar in
nature to our discussion above regarding component
classes and subclasses. In their system, the protocols
are specialized by the user. Figure 4 illustrates with a
diagram a workflow template of one of the abstract
protocols available in their system. Using the proposed

Figure 3. Sketch of a workflow template for

biomedical imaging used in [9].

Figure 4. Sketch of a workflow template to
represent an abstract protocol for genomic
analysis from [11].

Figure 5. Sketch of a workflow for protein

secondary structure prediction from [17].

approach in Wings, we are able to specialize the
protocols into executable pipelines automatically.

[16] describes an approach to protein secondary
structure prediction that uses several algorithms and a
combination function. Figure 5 illustrates the abstract
template that would correspond to the workflow
representing that approach.

These real-world workflows illustrate the potential
of our approach. If scientists had at their disposal
expressive reusable workflow templates and workflow
systems that could interpret, specialize, and execute
them, they would have a very powerful experimental
apparatus. Data analysis workflows are becoming
increasingly more complex, due to the use of
sophisticated statistical techniques and the increasing
diversity of algorithms available to them. For
example, the workflows shown in Section 2 are taken
from work that we are doing to represent nested cross-
validation approaches and optimization techniques for
parameter selection that are frequently used in
genomics and other sciences.

6. Related Work

Simplified approaches to dealing with collections of
data have a long tradition in computer science.
Sipelstein and Blelloch provide an extensive review of
collection-oriented programming languages [12].
While our focus is on workflow systems that deal with
collections, it is important to note that much of this
work adopts the approaches of programming languages
and in particular the use of higher-order functions such
as “map” that apply a function to all elements in a list.

Hidders et al. combine the Nested Relational
Calculus [2] and Petri-nets in a workflow language
called DFL to be able to deal with operations on
collections within in the context of data flow centric
workflows [5]. The Nested Relational Calculus is a
super set of comprehension syntax, commonly used in
collection oriented languages [1]. Our approach differs
from DFL in that Wings automatically determines how
a collection should be decomposed and recombined for
a particular component. In DFL, the user must specify
how this is done using explicit nest and unnest
operations.

Unlike DFL, Taverna is able to automatically
adapt a collection to a component [14]. For example,
when a component accepts a single data item as input
and is provided a list, Taverna performs an implicit
iteration using the component over the input data set. If
there are multiple inputs to the same component, then
Taverna performs either a dot or Cartesian product on
the input data sets and then invokes the implicit
iteration over the resulting list. For each workflow
component, the choice of dot or cartesian product is

specified by the user [13]. Hidders et al. provide an
alternative formal description of the semantics of a
Taverna workflow that treats collections but also deals
with failures and side effects [6]. Unlike Taverna, our
approach is to reason about collections prior to
execution. That is, a user or execution system can
determine how a data collection will impact a
workflow prior to execution. Additionally, Wings
handles not only data collections but also collections of
components. Thus, a user can more easily express an
experiment in which multiple components of the same
type can be applied to a collection of data.
Interestingly, [14] hypothesizes the ability to generate
an executable version of a workflow from a high-level
description. Wings realizes this hypothesized
functionality.

Kepler provides another approach to handling
collections of data. It specifies a particular data
structure for collections, namely a flat list of data
elements separated by tokens [9]. Once a collection is
transformed into Kepler’s format, Kepler models a
workflow as an “assembly line”, where the collection
is given to each component in the order defined by the
workflow. Each component is then responsible for
selecting the part of the collection that it needs to
operate on. Additionally, the component is responsible
for adding to the collection in a compatible manner.
This approach has several advantages including the
ability to incrementally modify a collection and the
elimination of complex control structures. However,
unlike our approach, it requires that both the data sets
and components are modified to conform with the
requirements of Kepler's approach.

7. Conclusions

Scientific applications often require complex
handling of collections of both components and data.
This paper builds upon our prior work in the Wings
workflow system and demonstrates an additional layer
of adaptability that allows a workflow template to be
applied and reused with collections that change its
structure. A novel contribution is the handling of
collections of components.

Acknowledgements

We gratefully acknowledge funding from the
National Science Foundation under grant CCF-
0725332. We thank Jihie Kim and Ewa Deelman for
many fruitful discussions. We also thank Vijay
Kumar, Michael Reich, and other collaborators who
inspired the research described in this paper.

References
[1] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong.

“Comprehension syntax”. SIGMOD Rec., 23(1):87–96, 1994.
[2] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. “Principles of

programming with complex objects and collection types”.
Theoretical Computer Science, 149(1):3–48, 1995.

[3] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, J.
Kim, G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C.
Jacob, D. S. Katz. “Pegasus: A Framework for Mapping Complex
Scientific Workflows onto Distributed Systems”. Scientific
Programming, Vol. 13, No. 3, 2005.

[4] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim. “Wings
for Pegasus: Creating large-scale scientific applications using
semantic representations of computational workflows”. In
Proceedings of 19th Annual Conference on Innovative
Applications of Artificial Intelligence (IAAI), Vancouver, British
Columbia, Canada, July 22-26 2007.

[5] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz, and J. V.
den Bussche. “DFL: A dataflow language based on Petri nets and
nested relational calculus”. Information Systems, 33(3):261 – 284,
2008.

[6] J. Hidders and J. Sroka. “Towards a calculus for collection-
oriented scientific workflows with side effects”. In On the Move
to Meaningful Internet Systems 2008: volume 33, pages 261–284,
Oxford, UK, 2008. Elsevier Science Ltd.

[7] J. Kim, E. Deelman, Y. Gil, G. Mehta, and V. Ratnakar.
“Provenance Trails in the Wings/Pegasus Workflow System,”
Concurrency and Computation: Practice and Experience, Vol 20,
Issue 5, April 2008.

[8] V.S. Kumar, P. Sadayappan, G. Mehta, K. Vahi, E. Deelman, V.
Ratnakar, J. Kim, Y. Gil, M. Hall, T. Kurc, and J. Saltz. “An
Integrated Framework for Parameter-based Optimization of
Scientific Workflows,” Proceedings of the 18th International
Symposium on High Performance Distributed Computing
(HPDC), Munich, Germany, June 11-13, 2009.

[9] T. Mcphillips, S. Bowers, and B. Ludaescher. “Collection
oriented scientific workflows for integrating and analyzing
biological data”. In Data Integration in the Life Sciences, pages
248–263. 2006.

[10] M. Reich, T. Liefeld, J. Gould, J. Lerner, P. Tamayo, and J. P.
Mesirov (2006) “GenePattern 2.0”. Nature Genetics 38 no. 5
(2006): pp500-501 doi:10.1038/ng0506-500.

[11] D. D. Roure, C. Goble, and R. Stevens. “The design and
realisation of the virtual research environment for social sharing
of workflows.” Future Generation Computer Systems, 25(5):561 –
567, 2009.

[12] J. M. Sipelstein and G. E. Blelloch. “Collection-Oriented
Languages”. Proceedings of the IEEE, 79(4):504–523, 1991.

[13] W. Tan, P. Missier, R. Madduri, and I. Foster. “Building
scientific workflow with Taverna and BPEL: A comparative study
in caGRID”. In Proceedings.4th International workshop on
Engineering Service-Oriented applications (WESOA), pages 118–
129. 2009.

[14] D. Turi, P. Missier, C. Goble, D. De Roure, and T. Oinn.
“Taverna workflows: Syntax and semantics.” In International
Conference on e-Science and Grid Computing, Los Alamitos, CA,
USA, 2007.

[15] M. Wieczorek, R. Prodan, and T. Fahringer. “Scheduling of
scientific workflows in the Askalon grid environment.” SIGMOD
Rec., 34(3):56–62, 2005

[16] X. Zhang, J. P. Mesirov, and D. L. Waltz. “Hybrid system for
protein secondary structure prediction.” Journal of Molecular
Biology, 20;225(4):1049-63, 1992.

